
Programming with Android:
Notifications, Threads, Services

Luca Bedogni
Dipartimento di Scienze dell’Informazione

Università di Bologna

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services 2

Outline

Services: Remote Services

Services: Local Services

Thread: Handler and Looper

Thread Management in Android

Notification Services: Toast Notifications

Notification Services: Status Bar Notifications

Broadcast Receivers

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 3

Android: Where are we now …

TILL NOW à Android Application structured has a single Activity
or as a group of Activities …

Ø Intents to call other activities
Ø Layout and Views to setup the GUI
Ø Events to manage the interactions with the user

Activities executed only in foreground …
Ø What about background activities?
Ø What about multi-threading functionalities?
Ø What about external events handling?

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 4

Android: Where are we now …

Ø Setup of the application GUI
Ø GUI event management
Ø Application Menu and Preferences
Ø Network functionalities (send/receive messages)
Ø Updates in background mode
Ø Notifications in case of message reception in

background mode

EXAMPLE: A simple application of Instantaneous Messaging (IM)

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 5

Android: Service Notifications Types

Service Notifications: Mechanism to notify information to the
end-user on the occurrence of specific events

Status Bar Notifications Toast Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 6

Android: Status Bar Notifications

Ø Used by background services to notify the occurrence of an
event that requires a response … without interrupting the
operations of the foreground activities!

Ø Display an icon on the
Status Bar (top screen)

ØDisplay a message in
the Notification Window

ØFire an event in case the
user selects the notification

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 7

Android: Status Bar Notifications

Notification Manager
Android system component
Responsible for notification management
And status bar updates

STATUS BAR
Notification

Ø Icon for the status bar
Ø Title and message
Ø PendingIntent to be fired

when notification is selected

Ø Ticket-text message
Ø Alert-sound
Ø Vibrate setting
Ø Flashing LED setting
Ø Customized layout

OPTIONs:

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 8

Android: Status Bar Notifications

Ø Follow these steps to send a Notification:

1. Get a reference to the Notification Manager
NotificationManager nm=(NotificationManager)

getSystemService(Context.NOTIFICATION_SERVICE)

2. Build the Notification message
public Notification(int icon, CharSequence tickerText, long when)
public void setLatestEvent(Context context, CharSequence contentTitle,
CharSequence contentText, PendingIntent intent)

3. Send the notification to the Notification Manager
public void notify(int id, Notification notification)

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 9

// Specificy icon, ticket message and time
Notification notification = new Notification(R.drawable.icon, "This is a very
basic Notification to catch your attention!", System.currentTimeMillis());

Build the notification object

Define what will happen in case the user selects the notification

// Build an explicit intent to NotificationActivity
Intent intent = new Intent(this, NotificationActivity.class);
PendingIntent pIntent = PendingIntent.getActivity(this, 0, intent,
PendingIntent.FLAG_CANCEL_CURRENT);

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 10

// Specificy that notification will disappear when handled
notification.flags |= Notification.FLAG_AUTO_CANCEL;

Add (optional) flags for notification handling

Send the notification to the Notification Manager

// Set short and long message to be displayed on the notification window
// Set the PendingIntent
notification.setLatestEventInfo(this, "Notification", "Click to launch
NotificationActivity", pIntent);
notificationManager.notify(SIMPLE_NOTIFICATION_ID, notification);

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 11

// Use a default sound
notification.defaults |= Notification.DEFAULT_SOUND;

Add a sound to the notification

Pass an URI to the sound field to set a different sound

notification.sound = Uri.parse(file://sdcard/path/ringer.mp3);

Use FLAG_INSISTENT to play the sound till notification is handled

notification.flags |= Notification.FLAG_INSISTENT;

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 12

// Use a default LED
notification.defaults |= Notification.DEFAULT_LIGHTS;

Add flashing lights to the notification

Define color and pattern of the flashing lights

notification.ledARGB = 0xff00ff00;
notification.ledOnMS = 300;
notification. ledOffMS = 1000;
notification.flags |= Notification.FLAG_SHOW_LIGHTS;

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 13

// Use a default vibration
notification.defaults |= Notification.DEFAULT_VIBRATE;

Add vibrations to the notification

Define the vibration pattern

// Set two vibrations, one starting at time 0 and with duration equal to 100ms
long[] vibrate={0,100,200,300};
notification.vibrate = vibrate;

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 14

Some flags that can be used (see the documentation)

Ø FLAG_NO_CLEAR: Notification is not canceled
Ø FLAG_ONGOING_EVENT: Notify ongoing events (e.g. a call)
Ø FLAG_AUTO_CANCEL: Notification disappears as handled
Ø FLAG_INSISTENT: Reproduce sound till notification is handled
Ø FLAG_FOREGROUND_SERVICE: Notification from an active service

… Also PendingIntents can have flags

Ø FLAG_CANCEL_CURRENT: PendingIntents are ovewritten
Ø FLAG_UPDATE_CURRENT: PendingIntents are updated (extra field)

Android: Status Bar Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 15

A Toast Notification is a message that pops up on the surface of the
window, and automatically fades out.

Ø Typically created by the foreground
activity.

Ø Display a message text and then
fades out

Ø Does not accept events! (use
Status Bar Notifications instead)

Android: Toast Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 16

A Toast Notification is a message that pops up on the surface of the
window, and automatically fades out.

Context context=getApplicationContext();

// Define text and duration of the notification
CharSequence text=“This is a Toast Notification!”;
int duration=Toast.LENGTH_SHORT;

Toast toast=Toast.makeText(context, text, duration);

// Send the notification to the screen
toast.show();

Android: Toast Notifications

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 17

Ø By default, all components of the same application run in the
same process and thread (called “main thread” or “UI” thread).

Ø In Manifest.xml, it is possible to specify the process in which
a component (e.g. an activity) should run through the
attribute android:process.

Ø Processes might be killed by the system to reclaim memory.
- Processes’ hierarchy to decide the importance of a process.
- Five types: Foreground, Visible, Service, Background, Empty.

Android: Processes and Threads

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 18

Ø Android natively supports a multi-threading environment.

Ø An Android application can be composed of multiple
concurrent threads.

Ø How to create a thread in Android? … Like in Java!

Ø extending the Thread class OR
Ø implementing the Runnable interface
Ø run() method executed when MyThread.start() is launched.

Android: Thread Management

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 19

public class MyThread extends Thread {

public MyThread() {
super (“My Threads”);

}

public void run() {
// do something

}
}

myThread m=new MyThread();
m.start();

Android: Thread Management

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 20

The UI or main thread is in charge of dispatching events to the
user interface widgets, and of drawing the elements of the UI.

Ø Do not block the UI thread.

Ø Do not access the Android UI components from outside the UI thread.

QUESTIONS:

How to update the UI components from worker threads?

Android: Thread Management

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 21

AsyncTask is a Thread helper class (Android only).

Android: AsyncTask

² Computation running on a background thread.
² Results are published on the UI thread.

Ø AsyncTask must be created on the UI thread.
Ø AsyncTask can be executed only once.
Ø AsyncTask must be canceled to stop the execution.

RULES

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 22

private class MyTask extends AsyncTask<Par, Prog, Res>

Android: AsyncTask

Par à type of parameters sent to the AsyncTask
Prog à type of progress units published during the execution
Res à type of result of the computation

private class MyTask extends AsyncTask<Void,Void,Void>

private class MyTask extends AsyncTask<Integer,Void,Integer>

EXAMPLES

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 23

Android: AsyncTask

The UI Thread invokes the execute method of the AsyncTask:

EXECUTION of the ASYNCTASK

(new Task()).execute(param1, param2 … paramN)

After execute is invoked, the task goes through four steps:

1.onPreExecute() à invoked on the UI thread
2.doInBackground(Params…) àcomputation of the AsyncTask

² can invoke the publishProgress(Progress…) method
3.onProgressUpdate(Progress …) à invoked on the UI thread
4.onPostExecute(Result) à invoked on the UI thread

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 24

Message-passing like mechanisms for Thread communication.

MessageQueue à Each thread is associated a queue of messages
Handler à Handler of the message associated to the thread
Message à Parcelable Object that can be sent/received

Android: Thread Management

Message
queueHandler

handleMessage(Message msg)

sendMessage(Message msg)

THREAD1 THREAD2

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012

Message loop is implicitly defined for the UI thread … but it
must be explicitly defined for worker threads.

HOW? Use Looper objects …

Android: Thread Management

public void run() {
Looper.prepare();
handler=new Handler() {

public void handleMessage(Message msg) {
// do something

}
}
Looper.loop();

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 26

A Service is an application that can perform long-running
operations in background and does not provide a user interface.

Android: Services

ØActivity à UI, can be disposed when it loses visibility

ØService à No UI, disposed when it terminates or when it is
terminated by other components

A Service provides a robust environment for background tasks …

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 27

Android: Services

Ø A Service is started when an application component starts
it by calling startService(Intent).

Ø Once started, a Service can run in background, even if
the component that started it is destroyed.

Ø Termination of a Service:
1. selfStop() à self-termination of the service
2. stopService(Intent) à terminated by others
3. System-decided termination (i.e. memory shortage)

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 28

Android: Service Lifetime

OnCreate()

OnStartCommand()

RUNNING

onDestroy()

startService()

startService()

stopService()
selfStop()

startService() might cause the execution of
OnCreate+OnStartCommand, or only of
OnStartCommand, depending whether the Service is
already running …

OnCreate() executed only once when the Service is created.

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 29

Android: Foreground Services

Ø A Service provides only a robust environment where to
host separate threads of our application.

² A Service is not a separate process.
² A Service is not a separate Thread (i.e. it runs in the

main thread of the application that hosts it).
² A Service does nothing except executing what listed in

the OnCreate() and OnStartCommand() methods.
² Behaviors of Local/Bound Services can be different.

COMMON MISTAKES

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 30

Android: Foreground Services

Ø A Foreground Service is a service that is continuously
active in the Status Bar, and thus it is not a good candidate
to be killed in case of low memory.

Ø The Notification appears between ONGOING pendings.

ØTo create a Foreground Service:
1. Create a Notification object
2. Call startForeground(id, notification) from onStartCommand()

Ø Call stopForeground() to stop the Service.

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 31

Android: Service Lifetime

OnCreate()

OnStartCommand()

RUNNING

onDestroy()

Two Types of Services:

1. Local Services: Start-stop
lifecycle as the one shown.

2. Remote/Bound Services:
Bound to application components.
Allow interactions with them, send
requests, get results, IPC facilities.

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 32

Android: Bound Service

OnCreate()

OnBind()

onDestroy()

onUnbind()

onRebind()
Client interacts with the Service …

ØA Bound Service
allows components
(e.g. Activity) to bind
to the services, send
requests, receive
response.

ØA Bound Service can
serve components
running on different
processes (IPC).

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 33

Android: Bound Service

Service Component
(e.g. Activity)

IBinder

IBinder onBind()

ServiceConnection

bindService(Intent, ServiceConnection, flags)

onServiceConnected(ComponentName, IBinder)

When the connection is established,
the Service will call the
onServiceConnected and pass a
reference of the IBinder to the
Component.

Ø Through the IBinder, the Component can send requests to the Service …

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 34

Android: Bound Service

ØWhen creating a Service, an IBinder must be created to
provide an Interface that clients can use to interact with
the Service … HOW?

1. Extending the Binder class (local Services only)
- Extend the Binder class and return it from onBind()
- Only for a Service used by the same application

1. Using the Android Interface Definition Language (AIDL)
- Allow to access a Service from different applications.

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 35

public class LocalService extends Service {
// Binder given to clients
private final IBinder sBinder=(IBinder) new SimpleBinder();

@Override
public IBinder onBind(Intent arg0) {

// TODO Auto-generated method stub
return sBinder;

}

class SimpleBinder extends Binder {
LocalService getService() {

return LocalService.this;
}

}
}

Android: Bound Service

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 36

public class MyActivity extends Activity {
LocalService lService;
private ServiceConnection mConnection=new ServiceConnection() {

@Override
public void onServiceConnected(ComponentName arg0, IBinder bind) {

SimpleBinder sBinder=(SimpleBinder) bind;
lService=sBinder.getService();
….

}

@Override
public void onServiceDisconnected(ComponentName arg0) {
}
… bindService(new Intent(this,LocalService.class),mConnection,BIND_AUTO_CREATE);

};

Android: Bound Service

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 37

Android: Broadcast Receiver

ØRegistration of the Broadcast Receiver to the event …

1. Event à Intent
2. Registration through XML code
3. Registration through Java code

ØHandling of the event.

A Broadcast Receiver is a component that is activated only
when specific events occur (i.e. SMS arrival, phone call, etc).

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 38

Android: Broadcast Receiver

A Broadcast Receiver is a component that is activated only
when specific events occur (i.e. SMS arrival, phone call, etc).

OnReceive ()

ØSingle-state component …
ØonReceive() is invoked
when the registered event
occurs

Ø After handling the event, the
Broadcast Receiver is
destroyed.

BROADCAST RECEIVER LIFETIME

EVENT

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 39

Android: Broadcast Receiver

ØRegistration of the Broadcast Receiver to the event …
XML Code: à modify the AndroidManifest.xml

<application>
<receiver class=“SMSReceiver”>

<intent-filter>
<action android:value=“android.provider.Telephony.SMS_RECEIVED”

/>
</intent-filter>

</receiver>
</application>

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 40

Android: Broadcast Receiver

ØRegistration of the Broadcast Receiver to the event …
In Java à registerReceiver(BroadcastReceiver, IntentFilter)

receiver=new BroadcastReceiver() { … }

protected void onResume() {
registerReceiver(receiver, new IntentFilter(Intent.ACTION_TIME_TICK));

}

protected void onPause() {
unregisterReceiver(receiver);

}

Luca Bedogni, Marco Di Felice - Programming with Android – Threads and Services(c) Luca Bedogni 2012 41

Android: Broadcast Receiver

How to send the Intents handled by Broadcast Receivers?

Øvoid sendBroadcast(Intent intent)
… No order of reception is specified

Øvoid sendOrderedBroadcast(Intent intent, String permit)
… reception order given by the android:priority field

sendBroadcast() and startActivity() work on different contexts!

