Programming with Android:
Testing

Luca Bedogni

Dipartimento di Scienze dell’Informazione
Universita di Bologna

(Why test?

(/ Testing Android APPs: Monkey
. Testing Android APPs: Monkeyrunner
@ Android Profiling: CPU
. Android Profiling: Memory

'Inspect layout with Layoutinspector

() Perform tests with Espresso

Luca Bedogni = Programming with Android — Testing 2

i1 Where we are right now

We know how Android is built

Know basic components such as Activities

We know how to interact between Activities (Intents)
We know how to handle View events

Know how to place elements (Layouts)

OO
DCIIRC IR
D

o
=
()

** We are ready to develop Android applications

Luca Bedogni = Programming with Android — Testing

Retention rate

Less than 25% of APP users return
after the first day of use.

Usually, mobile gaming experiences
the highest retention rate

Social APPs perform better on iOS = o mom w ow o os oe o

Food and Beverages APPs
experience a “weekly” retention rate

Top 10 apps lose 49% of customers
after 90 days
= Top 5000 lose 91% —

Day

. Average APPS |OSG 95% Source: Braze report

Luca Bedogni = Programming with Android — Testing 4

Who tests and what?

“0Only 29% of Mobile developers do exploratory testing
“+67% of customers quit because of bad experiences
“+0Only 4% of unhappy customer complain

“» Testing is expensive and time consuming
= But ensures optimum performance
= Stability of application
= Reduces time and cost to market the application
= Raises level of user experience

Luca Bedogni = Programming with Android — Testing 5

<R ST
476 VW4
S | e -]
SR A 7
(2] Epning
AR = 2 gy t=a -
z al o & $
/if‘? A (DA
2 D

* Have all the quirks » Easier to manage
present in real » Cost effective
client hardware . Do not have real

 Hardware faults

exception handling
IS possible
* \ery expensive

Luca Bedogni = Programming with Android — Testing 6

Different kind of testing

* Test small pieces of your APP
« Each unit is tested separately from the others

Integratio[l To integrate single units together

* Behave like black boxes
« Starting from inputs, check whether the outputs are those expected

» Evaluated in terms of response time and desired performance levels
Performa B Responsiveness and stability
nce » Check whether battery, network, CPU, other applications affect your APP

* To check APP behavior beyond normal usage levels

* Better to have thinner screens that perform well
* Instead of Bulky ones with lots of functionalities
» Check for different icon/images/text sizes

\
v |
v
v

Luca Bedogni = Programming with Android — Testing 7

Testing the App

“*Check for bugs

= Test automation
“*Profile the APP

= To test for slow code

“*Android provides several tools

= Monkey
= APP Profiler
= Layoutinspector

Luca Bedogni = Programming with Android — Testing 8

*» Different smartphones, different possibilities
* Do it yourself: generate events on your application, see how it

reacts.
= Touch events, gestures

*» Events can also come from the system
= (Calls, sms, notifications

» How to handle all possible events?
» How to repeat tests?
“* Long and repetitive task, work for a monkey...

4

®

®

0

0

Luca Bedogni = Programming with Android — Testing

... SO use a Monkey!

* The Monkey is a command line tool
= (Can run on the emulator or on the device
= Sends events to the device

*»» Has several options
= Basic options
= Constraints
= Kind of events and frequency

Luca Bedogni = Programming with Android — Testing

When the Monkey runs

¢ |t sends events to the device

s And monitors it
= To cope with constraints
= To check for errors
= To check for APP related blocking events

% Basic usage:

adb shell monkey -p my.package -v 500

= Meaning: run the monkey on my.package generating 500 events

Luca Bedogni = Programming with Android — Testing

Monkey options: events and constraints

Events
-V Verbosity level. Each v on the command line increases the level
-S Seed. Use it to reproduce events
--throttle Delay after events
--pct- Adjust the percentage of the specified event

{motion,trackball,t
ouch,nav,majorna
V,syskeys,appswit
ch,anyevent}

Constraints

-p Package or packages allowed to be visited.
-C Category allowed to be visited

Luca Bedogni = Programming with Android — Testing

Monkey options: debugging

Debugging
Option | Meaning

--dbg-no-events Only launch a test activity

--hprof Generate profiling reports
--ignore-crashes If something crashes, go on
--ignore-timeouts If timeout, wait

--ignore-security- If something requires a non granted permission, go on

exceptions

--kill-process-after- |f something crashes, then kill the process
error

--monitor-native- Watch and monitor system related crashes
crashes

--wat-dbg Stop until a debugger is attached

Luca Bedogni = Programming with Android — Testing

;z The monkey tool and monkeyrunner

“*They are two different tools
= The former runs inside adb

= The latter may attach to multiple devices, and run specific
tests

“*The monkeyrunner runs a program written in Jython
<*Can be extended with plugins

Luca Bedogni = Programming with Android — Testing 14

Monkeyrunner example

from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice
device = MonkeyRunner.waitForConnection()

print "Launch WidgetExampleActivity”
device.startActivity(component='it.cs.android33/it.cs.android33.WidgetExampleActivity')

MonkeyRunner.sleep(1)

result = device.takeSnapshot()
result.writeToFile('screenshot.png','png’)
print "Saved screenshot in screenshot.png”

device.touch(20,500,'DOWN_AND_ UP')

MonkeyRunner.sleep(1)

result = device.takeSnapshot()
result.writeToFile('screenshot2.png','png')
print "Saved screenshot in screenshot2.png"

Luca Bedogni = Programming with Android — Testing 15

ol APP Profiling

“*Android provides several tools for APP monitoring

+*One of them is the Android Profiler
= Monitors CPU/MEMORY/NETWORK

777777777777777777

5%
38.2 MB
Sending: 0 B/s — Receiving: 0 B/s

10s 15s 20s 25s 30s

Luca Bedogni = Programming with Android — Testing 16

APP Profiling

fidgetExampleActivity

N . . VEBIORE m jJava: 25.2 M B Native: 7.1 MB Graphics: 0 MB 1 Stack: 0.2 MB Code
<+ Can provide details on o e
memory and CPU usage somesasve [

B Stack: 0.2 MB

< Use it to test parts of your
code which slow down the
APP

Graphics: 0 MB
B Native: 6.6 MB

H Java: 25.2 MB

-- Allocated: 1013039 255 30s

1 Recorded Allocations default heap v Arrange by class © o0:09:23.210- 00:09:28.005 'Y
Class Name Allocations Shallow Size ¥
default heap 478 12192

¢ charf] 55 2320

¢ Class[] (java.lang) 84 1344

¢ Constructor (java.lang.reflect) 84 1344

¢ StringBuilder (java.lang) 40 1280

€ Field (java.lang.reflect) 56 896

Luca Bedogni = Programming with Android — Testing 17

APP Profiling: CPU

ui.lmageGridActivity

CPU
100 %

CPU at 8.77s
B App:34.7%
Others: 39.9%

== Threads: 21

Signal Catcher

kHttp Connecti

Om 10.00s 15.00s

Luca Bedogni = Programming with Android — Testing 18

Device Control

X O O) Extended controls

GPS data point

C
=
o

‘D | C e system Decimal
n .4 10
A . Currently reported locatiol Latitude
| Longitude: 10.0000 45

Latitude: 45.0000
‘c Atitude: 1.0

Altitude (meters)

1.0

GPS data playback

\'\

et Delay (sec) Latitude Longitude Elevation Name Description

O &

Luca Bedogni = Programming with Android — Testing 19

Device Control: Location

X O O) Extended controls

9 GPS data point

*D LSO N EYS Decimal L
A 10
. Currently reported location Latitude
Longtude 10.0000 a5

Latitude: 45.0000

ol o ——
0]
Q
<
e

GPS data playback

\°\

| Delay (sec) Latitude Longitut Elevation Name Description

Q
(¢

O &

Luca Bedogni = Programming with Android — Testing 20

Device Control: Phone and Sensors

From

(650) 555-1212

Y& HOLD CALL V. ENDCALL

SMS message

Don't forget the marshmallows!

>> SEND MESSAGE

Accelerometer Additional sensors

Device rotation

0 o 0 o

@ Rotate O Move

Yaw —. 44.6
-180 180 Resulting Values
Accelerometer (m/s%): 6.18 6.27 433
pitch 9 26.2 Magnetometer (uT): -23.83 3.54 42.34
-180 180 Rotation: ROTATION_O
Roll —9 50.8
180 180

Luca Bedogni = Programming with Android — Testing 21

LayoutInspector

H & o & A, Czapp M B 7 (s m G L ? Q
07_widgets captures ~ I it.cs.android33_2018.03.27_09.17.li
5 ® app € WidgetExampleActivity.java I it.cs.android33_2018.03.27_09.17.li C Elements.java ¢ AndroidManifest.xml o
2
£ view Tree Q, #- 1= [5G Load Overlay B e, @, Properties Table Q %~ ! g
',_,' =1 PhoneWindow$DecorView accessibility °
[] decor_content_parent (ActionBarOverlayLayout) drawing
g =] Ea)]ntent (FramelLayout) SetAlphal) 1.0
© lay (LinearLayout) ;
2 v y)) WidgetExample getElevation() 0.0
a Ab text1 (TextView) - "Hello my name Is Lucs Hello my name is Luca Bedoani, this is a Link to my webpd .
'f' AP, editText1 (AutoCompleteTextView) - " ‘ getPivotX() 231.0
@ buttonS (Button) - "SimpleButton” TG getPivotY() 231.0
@ +/ checkBox1 (CheckBox) - "ButtonEnable” e getRotation() 0.0
3 (N toggleButton1 (ToggleButton) - "Spento” pr— getRotationX() 0.0
Q . . . e S
8 @ radioGroup1 (RadioGroup) getRotationY() 0.0
® i i o "
® ® rad!oo (Rac{loButton) RosSO getscaleX() 1.0
(® radio1 (RadioButton) - "Blu" Scaley o

£ (® radio2 (RadioButton) - "Verde" getScaleY() :
@ N
= @ analogClock1 (AnalogClock) - "18:36" getSolidColor() o
; 2:15 digitalClock1 (DigitalClock) - "6:36 PM" getTransitionAlpha() 1.0 0
= [Z1 action_bar_container (ActionBarContainer) getTranslationX() 0.0 o
P K @
"W ™ action_bar (Toolbar) getTranslationY() 0.0 §'
v Ab TextView - "WidgetExample" getTranslationZ() 0.0 ‘%
2 [Actio 1View
s i getX() 0.0 o
> [action_context_bar (ActionBar 'g_
Z| [statusBarBackground (View) getY() 8s3.0)
A qetZ() 0.0

P 4:Run ©2TODO = 6:logcat r7yAndroid Profiler [m@]Terminal |%Build 1 Event Log
Q Connection attempts: 5 (3 minutes ago) Context: <no > B

Luca Bedogni = Programming with Android — Testing 22

LayoutInspector

 Main Window:

WidgetExample
« Each view is clearly S
separated from the others G
Double clicking on an item —

separates it from the —
whole picture

* By clicking on items, you
load specific attributes for
such view

Luca Bedogni = Programming with Android — Testing 23

LayoutInspector

. View Tree Q #- -
* On the left - view tree: o pronaindonsoecrvon

[1 decor_content_parent (ActionBarOverlayLayout)
[=] content (FrameLayout)

* You get the whole I 2 Cnsarayout

Ab text1 (TextView) - "Hello my name is Luca
h ie ra rchy Of th e Scree n AP, editText1 (AutoCompleteTextView) - ""

@ buttonS (Button) - "SimpleButton”

+/ checkBox1 (CheckBox) - "ButtonEnable"”

° U Sefu I to u n d e rsta n d h OW [toggleButton1 (ToggleButton) - "Spento”

@ radioGroup1 (RadioGroup)
: ® radio0 (RadioButton) - "Rosso”
Ite mS a re n eSted (® radio (RadioButton) - "Blu"
(® radio2 (RadioButton) - "Verde"

PY F pI I y t © analogClock1 (AnalogClock) - "18:36"
O r CO m eX a O u O r 2:15 digitalClock1 (DigitalClock) - "6:36 PM"
[action_bar_container (ActionBarContainer)

Sma“ VieW, aISO used to ™ action_bar (Toolbar)

Ab TextView - "WidgetExample"

select specific vies LEEE
] statusBarBackground (View)

Luca Bedogni = Programming with Android — Testing 24

LayoutInspector

* On the right- properties:

When selecting a view,
here we have the details

In case the layout is not
seen as intended, used to
understand which property
IS misbehaving

Luca Bedogni = Programming with Android — Testing

Properties Table

accessibility

drawing
getAlpha()
getElevation()
getPivotX()
getPivotY()
getRotation()
getRotationX()
getRotationY()
getScaleX()
getScaleY()
getSolidColor()
getTransitionAlpha()
getTranslationX()
getTranslationY()
getTranslationZ()
getX()
getY()
aetZ()

Q %~ 1

1.0
0.0
540.0
62.0
0.0
0.0
0.0
1.0
1.0

1.0
0.0
0.0
0.0
0.0
57.0
0.0

layout_mMarginFlags

ox1C

layout_mMarginFlags_LEFT_0x4
layout_mMarginFlags_RIGHT_MARGIN_UM

layout_mMarginFlags_RTL_(0x10

layout_rightMargin
layout_startMargin
layout_topMargin
layout_weight
layout_width
mBottom
mLeft
mRight
mTop
measurement
mMeasuredHeight
mMeasuredWidth
mMinHeight
mMinWidth

methods

0
-2147483
0

0.0
MATCH_P
181

0

1080

57

124
1080

25

“*Espresso is needed for Ul tests
»|dea:
= Create a class with several methods

= Each method represent a test
» Can check for View contents, perform clicks etc.

= Running the tests reports success or failure

» Example

onView(withld(R.id.my_view))
.perform(click())
.check(matches(isDisplayed()));

Luca Bedogni = Programming with Android — Testing 26

Espresso: how to configure it

Add the following as dependencies

androidTestCompile 'com.android.support.test.espresso:espresso-core:3.0.1"
androidTestCompile 'com.android.support.test:runner:1.0.1"

Add this in defaultConfig in build.gradle

testinstrumentationRunner "android.support.test.runner.AndroidJUnitRunner”

Create a class in src/androidTest/java/my.package/

@RunWith(AndroidJUnit4.class)
@LargeTest
public class HelloWorldEspressoTest {

@Rule
public Activity TestRule<MainActivity> mActivityRule =
new ActivityTestRule(MainActivity.class);

@Test
public void listGoesOverTheFold() {

onView(withText("Hello world!")).check(matches(isDisplayed()));
}

) 27

The 4 Espresso building blocks

<> Espresso
= Main Entry point, needed to interact with

views and perform view-independent
actions

+» ViewMatchers

= A set of components through which it is

) s onView(withld(R.id.my_view))
possible to match certain views.

Luca Bedogni = Programming with Android — Testing 28

The 4 Espresso building blocks

<> Espresso
= Main Entry point, needed to interact with

views and perform view-independent
actions

+» ViewMatchers

= A set of components through which it is
possible to match certain views.

+» ViewActions

= A set of components to perform actions on
views

onView(withld(R.id.my_view))
.perform(click())

Luca Bedogni = Programming with Android — Testing 29

The 4 Espresso building blocks

<> Espresso
= Main Entry point, needed to interact with

views and perform view-independent
actions

+» ViewMatchers

= A set of components through which it is

) s onView(withld(R.id.my_view))
possible to match certain views.

.perform(click())
<2 ViewActions .check(matches(isDisplayed()));

= A set of components to perform actions on
views

“* ViewAssertions
= To check specific view properties

Luca Bedogni = Programming with Android — Testing 30

The Espresso cheat sheet

onView(ViewMatcher)
.perform(ViewAction)
.check(ViewAssertion);

View Matchers

onData(ObjectMatcher)
.DataOptions
.perform(ViewAction)
.check(ViewAssertion);

Data Options

USER PROPERTIES
withId(...)

withText(...)

withTagKey(....) isDescendantOfA
withTagValue(...) hasSibl

h tentDescription(...) isRoot ()

supports:

h ipsizedText()
hasMultilineTest()

UI PROPERTIES cLASS
isAssignableFrom()
withClasshame (. ..)

¢ ROOT MATCHERS
ecked() isFocusable()
EffectiveVisibility(...) isT O

isSelected()

OBJECT MATCHER

SEE ALSO
Pref

h(string)
startsWith(String)
instance0f (Class)

ayout matchers

CLICK/PRESS GESTURES
click() scrollTo()
doubleClick() swipeLeft()
longClick() swipeRight ()
pressBack() swipeUp()
pressl! onButton()
pressk /Espressokey])
presshenukey (
closeSof tkeyboard()
openLink()

swipeDown()

ilineButtons()
noOverlaps([Matcher])

isBottomAlignedWi th(Matche
isTopAlignedWi th(Mat

CHEAT SHEET

r- o
) espresso > |

Luca Bedogni = Programming with Android — Testing

Available at:

https://developer.android.com/training/testing/espresso/cheat-sheet.html

intended(IntentMatcher); intending(IntentMatcher)

.respondWith(ActivityResult);
Intent Matchers

INTENT URI BUNDLE
hasAction(...) hasHost(. ..) hasEntry(
hasCategories(...) hasParanWi thName(. . .) haskey(....)
hasData(...) hasPath(...) hasvalue(...)
hasComponent (
hasExtra(
)
COMPONENT NAME
hasClas:)

h: me(...)
hasMyPackageName ()

31

