
Programming with Android: 
Testing

Luca Bedogni
Dipartimento di Scienze dell’Informazione

Università di Bologna



Luca Bedogni - Programming with Android – Testing 2

Outline

Android Profiling: Memory

Android Profiling: CPU

Testing Android APPs: Monkeyrunner

Testing Android APPs: Monkey

Why test?

Inspect layout with LayoutInspector

Perform tests with Espresso



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 3

v We know how Android is built
v We know basic components such as Activities
v We know how to interact between Activities (Intents)
v We know how to handle View events
v We know how to place elements (Layouts)

vWe are ready to develop Android applications

Where we are right now



Luca Bedogni - Programming with Android – Testing

Retention rate

vLess than 25% of APP users return 
after the first day of use.

vUsually, mobile gaming experiences 
the highest retention rate

vSocial APPs perform better on iOS
vFood and Beverages APPs 

experience a “weekly” retention rate
vTop 10 apps lose 49% of customers 

after 90 days
§ Top 5000 lose 91%
§ Average APPs lose 95%

4

Source: Braze report



Luca Bedogni - Programming with Android – Testing

Who tests and what?

vOnly 29% of Mobile developers do exploratory testing
v67% of customers quit because of bad experiences
vOnly 4% of unhappy customer complain
vTesting is expensive and time consuming

§ But ensures optimum performance
§ Stability of application
§ Reduces time and cost to market the application
§ Raises level of user experience

5



Luca Bedogni - Programming with Android – Testing

Testing with?

6

Real Device

• Have all the quirks 
present in real 
client hardware

• Hardware 
exception handling 
is possible

• Very expensive

Emulator

• Easier to manage
• Cost effective
• Do not have real 

faults



Luca Bedogni - Programming with Android – Testing

Different kind of testing

7

Unit 
Testing

• Test small pieces of your APP
• Each unit is tested separately from the others

Integratio
n

• To integrate single units together

Function
ality

• Behave like black boxes
• Starting from inputs, check whether the outputs are those expected

Performa
nce

• Evaluated in terms of response time and desired performance levels
• Responsiveness and stability
• Check whether battery, network, CPU, other applications affect your APP

Stress
• To check APP behavior beyond normal usage levels

Usability

• Better to have thinner screens that perform well 
• Instead of Bulky ones with lots of functionalities
• Check for different icon/images/text sizes



Luca Bedogni - Programming with Android – Testing

Testing the App

vCheck for bugs
§ Test automation

vProfile the APP
§ To test for slow code

vAndroid provides several tools
§ Monkey
§ APP Profiler
§ LayoutInspector

8



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 9

v Different smartphones, different possibilities
v Do it yourself: generate events on your application, see how it 

reacts.
§ Touch events, gestures

v Events can also come from the system
§ Calls, sms, notifications

v How to handle all possible events?
v How to repeat tests?
v Long and repetitive task, work for a monkey…

How to test?



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 10

v The Monkey is a command line tool
§ Can run on the emulator or on the device
§ Sends events to the device

v Has several options
§ Basic options
§ Constraints
§ Kind of events and frequency

… so use a Monkey!



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 11

v It sends events to the device
v And monitors it

§ To cope with constraints
§ To check for errors
§ To check for APP related blocking events

v Basic usage:

§ Meaning: run the monkey on my.package generating 500 events

When the Monkey runs

adb shell monkey -p my.package -v 500



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 12

Monkey options: events and constraints

Option Meaning
-v Verbosity level. Each v on the command line increases the level
-s Seed. Use it to reproduce events
--throttle Delay after events
--pct-
{motion,trackball,t
ouch,nav,majorna
v,syskeys,appswit
ch,anyevent}

Adjust the percentage of the specified event

Option Meaning
-p Package or packages allowed to be visited.
-c Category allowed to be visited

Events

Constraints



Luca Bedogni - Programming with Android – Testing (c) Luca Bedogni 2012 13

Monkey options: debugging

Option Meaning
--dbg-no-events Only launch a test activity
--hprof Generate profiling reports
--ignore-crashes If something crashes, go on
--ignore-timeouts If timeout, wait
--ignore-security-
exceptions

If something requires a non granted permission, go on

--kill-process-after-
error

If something crashes, then kill the process

--monitor-native-
crashes

Watch and monitor system related crashes

--wat-dbg Stop until a debugger is attached

Debugging



Luca Bedogni - Programming with Android – Testing

The monkey tool and monkeyrunner

vThey are two different tools
§ The former runs inside adb
§ The latter may attach to multiple devices, and run specific 

tests
vThe monkeyrunner runs a program written in Jython
vCan be extended with plugins

14



Luca Bedogni - Programming with Android – Testing

Monkeyrunner example

15

from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()

print "Launch WidgetExampleActivity”
device.startActivity(component='it.cs.android33/it.cs.android33.WidgetExampleActivity')

MonkeyRunner.sleep(1)
result = device.takeSnapshot()
result.writeToFile('screenshot.png','png')
print "Saved screenshot in screenshot.png”

device.touch(20,500,'DOWN_AND_UP')

MonkeyRunner.sleep(1)
result = device.takeSnapshot()
result.writeToFile('screenshot2.png','png')
print "Saved screenshot in screenshot2.png"



Luca Bedogni - Programming with Android – Testing

APP Profiling

vAndroid provides several tools for APP monitoring
vOne of them is the Android Profiler

§ Monitors CPU/MEMORY/NETWORK

16



Luca Bedogni - Programming with Android – Testing

APP Profiling

vCan provide details on 
memory and CPU usage

vUse it to test parts of your 
code which slow down the 
APP

17



Luca Bedogni - Programming with Android – Testing

APP Profiling: CPU

18



Luca Bedogni - Programming with Android – Testing

Device Control

19



Luca Bedogni - Programming with Android – Testing

Device Control: Location

20



Luca Bedogni - Programming with Android – Testing

Device Control: Phone and Sensors

21



Luca Bedogni - Programming with Android – Testing

LayoutInspector

22



Luca Bedogni - Programming with Android – Testing

LayoutInspector

23

• Main Window:
• Can see the whole layout
• Each view is clearly 

separated from the others
Double clicking on an item 
separates it from the 
whole picture

• By clicking on items, you 
load specific attributes for 
such view



Luca Bedogni - Programming with Android – Testing

LayoutInspector

24

• On the left - view tree:
• You get the whole 

hierarchy of the screen
• Useful to understand how 

items are nested
• For complex layout or 

small view, also used to 
select specific vies



Luca Bedogni - Programming with Android – Testing

LayoutInspector

25

• On the right- properties:
• When selecting a view, 

here we have the details
• In case the layout is not 

seen as intended, used to 
understand which property 
is misbehaving



Luca Bedogni - Programming with Android – Testing

Espresso

vEspresso is needed for UI tests
vIdea:

§ Create a class with several methods
§ Each method represent a test

• Can check for View contents, perform clicks etc.
§ Running the tests reports success or failure

» Example

26

onView(withId(R.id.my_view)) 
.perform(click()) 
.check(matches(isDisplayed())); 



Luca Bedogni - Programming with Android – Testing

Espresso: how to configure it

vAdd the following as dependencies

vAdd this in defaultConfig in build.gradle

vCreate a class in src/androidTest/java/my.package/

27

androidTestCompile 'com.android.support.test.espresso:espresso-core:3.0.1'
androidTestCompile 'com.android.support.test:runner:1.0.1'

testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

@RunWith(AndroidJUnit4.class)
@LargeTest
public class HelloWorldEspressoTest {

@Rule
public ActivityTestRule<MainActivity> mActivityRule =

new ActivityTestRule(MainActivity.class);

@Test
public void listGoesOverTheFold() {

onView(withText("Hello world!")).check(matches(isDisplayed()));
}

}



Luca Bedogni - Programming with Android – Testing

The 4 Espresso building blocks

v Espresso
§ Main Entry point, needed to interact with 

views and perform view-independent 
actions

v ViewMatchers
§ A set of components through which it is 

possible to match certain views.

28

onView(withId(R.id.my_view)) 
.perform(click()) 
.check(matches(isDisplayed())); 



Luca Bedogni - Programming with Android – Testing

The 4 Espresso building blocks

v Espresso
§ Main Entry point, needed to interact with 

views and perform view-independent 
actions

v ViewMatchers
§ A set of components through which it is 

possible to match certain views.
v ViewActions

§ A set of components to perform actions on 
views

29

onView(withId(R.id.my_view)) 
.perform(click()) 
.check(matches(isDisplayed())); 



Luca Bedogni - Programming with Android – Testing

The 4 Espresso building blocks

v Espresso
§ Main Entry point, needed to interact with 

views and perform view-independent 
actions

v ViewMatchers
§ A set of components through which it is 

possible to match certain views.
v ViewActions

§ A set of components to perform actions on 
views

v ViewAssertions
§ To check specific view properties

30

onView(withId(R.id.my_view)) 
.perform(click()) 
.check(matches(isDisplayed())); 



Luca Bedogni - Programming with Android – Testing

The Espresso cheat sheet

31

Available at: 
https://developer.android.com/training/testing/espresso/cheat-sheet.html


